Memory Doesn’t Lie

Hunting Modern Malware Beyond the File: A Comparative Study
of Amadey Detection and the Amadey Pipeline Toolkit (APT)

Modern Malware Hides in Plain Sight

Static analysis, which inspects files at rest, is easily defeated by common
obfuscation techniques, creating a critical blind spot for defenders.

Static Detection’s
Blind Spot

» Analyzes files on disk,
looking for known byte
patterns (signatures).

Case Study:
Amadey’s Deception

« Amadey employs a
double-encoding
scheme (custom +
Base64) to hide all
critical strings and its
malicious payload.

» Fundamentally
vulnerable to evasion
via Packers,
Encryption, and
Polymorphism.

e This renders
traditional, signature-
based static analysis

Packed/Encrypted Unpacked Logic ineffective.

File on Disk in Memory

&1 NotebookLM

Why Signature-Based Defenses Are a Losing Battle

Attackers can generate endless new file variants with minimal effort, making
hash-based blocklists and static signatures a strategy of diminishing returns.

> (@ File Hash: 0dSb..,
> © Fike Hash: {7€0... . @) File Hash: 0Sb...
— > @ File Hash: Sbic... — @) File Hash: caft...
e e > @ File Hash: 7aBe...
> @ File Hash: 2b9c...
> () File Hash: 4d6f...
—> @) File Hash: d1e8...
> @ File Hash: f3b2...

> @ File Hash: S¢7a...
—> (@) File Hash: 1d8e...

“Superficial file hashes or specific string
signatures are bound to miss variants.”

@ File Hash: 8a2b...
@ File Hash: ddel...

_ —> @ File Hash: a90d...
= > [File Hash: e2fs...
—> () File Hash: 1béa..
@ File Hash: 6cBd...
@ File Hash: b3ed...
@ File Hash: b3ed...

Core Luglc H _ F“f tlfh_ ? Eﬁl —> @ File Hash: 6a0f...
— @ File Hash: c48b... ——u 5 % File Hash: b5e9...
New Variant Signature Signature /,,=_ NS
; Released Created Packer: /' qrp{Sh '\ o
The Vicious Cycle [GO) soromes
lllustrated |\ €
() Attacker \ D / Useless
Modifies wf/
Packer e

&1 NotebookLM

The Hunt Moves to Memory

To uncover a malware’s true intent, we must analyze it during execution.
Memory forensics bypasses all layers of on-disk obfuscation.

A Fundamental Shift
in Perspective

o Static Analysis Asks:
“What does this file look like?”

« Memory Analysis Asks:
“What is this process
actually doing?”

In Memory

Core Principle Malware must eventually decrypt and expose its true payload in memory
to function. Memory analysis captures this unpacked, operational state.

&1 NotebookLM

Discovering ‘Execution Invariants’

Regardless of on-disk obfuscation, a malware'’s core functions create
unavoidable and repeatable patterns—its true fingerprints—in memory.

Defining Invariants:

The Attacker’s
Achilles’ Heel

Definition: Core code or
data patterns that are
essential for the malware'’s
function and remain
consistent across variants.

Why They Exist: Attackers
must reuse core logic for
efficiency, stability, and
profitability (especially in
Malware-as-a-Service
models).

S Annotatet A

Unpacking

In Memory
ﬁir‘fé? Variant B ' 3 _ 7
N = g
Variant B

I Core Malicious

Code

Annotation

Variant C

Common
Examples

Hardcoded decryption
routines.

Target data strings (e.g.,
“cookies.sqlite).

Unigque sequences of
API calls.

& NotebooklLM

Amadey’s Invariants: Exposing Its DNA in Memory

Despite its double-encoding, Amadey leaves behind distinct, repeatable traces
that are perfect for creating robust detection rules.

Decryption Keys Developer Artifacts Immutable Logic (Code Snippet)
Multiple hardcoded 32-character The debug path string This unique x86 instruction
hexadecimal strings used as "\Amadey\Release\Amadey.pdb" sequence represents a core
decryption keys become visible often persists in memory across function and appears
in memory after unpacking. repacked variants, acting as a consistently. It can be captured

stable signature. as a byte pattern.
e Pl s s o B i ; Amade&{’ Eemgrg]%ipﬂet
» . mov ebp-0xC], eax
BEGIS040 38 39 35 33 45 32 32 3T N 33 3 32 42 44 45 33 BOE3EIZTOTSTEOF3 - .
e T T \amaCeypreren Senhnal CYepdb cmp [ebp-0xC], 8

je

lea eax, [ebp-0x218]

& NotebooklLM

Memory Convergence: A Cross-Family Phenomenon

The principle of seeking execution invariants applies broadly. Different malware families
reveal their own characteristic behaviors and artifacts in memory.

Amadey (Loader)

e Consistent C2 communication
structures and unique string

% decoding logic.

RedLine (Stealer)

Plaintext strings revealing
i target browser paths
. (cookies.sqlite) and
& cryptocurrency wallet
keywords.

FormBook (Loader)

Distinctive API call patterns
Q (e.g., VirtualAllocEx,
.gﬂ ‘WriteProcessMemory)
B4\ related to process injection
from its ‘Babushka Crypter..

SmokeLoader (Loader)

A common trait of injecting its
main payload module into the
E\l explorer.exe process.

& NotebooklLM

The Attacker’s Dilemma: The High Cost of True Evasion

While erasing memory footprints is theoretically possible, it imposes a crippling cost on the
attacker in terms of development complexity, performance, and stability.

Profitability
& Efficiency
Cost & Complexity
for Attacker
Evasion Tactic: Metamorphic Engines Evasion Tactic: Constant In-Memory Evasion Tactic: Custom Virtual
Re-encryption Machines
Cost: Extreme development complexity, Cost: Severe performance overhead Cost: Creates a new, large, and stable
high risk of bugs, and difficult to and potential for system instability. signature—the VM interpreter itself.

maintain.

For most Malware-as-a-Service (MaaS) operations, the ROl for these techniques is too low.

Reusing stable, core logic is the profitable and therefore common choice.
& NotebookLM

Codifying Invariants with YARA for Automated Detection

YARA is the ideal tool for translating our knowledge of execution invariants into
powerful, flexible, and scalable detection rules for process memory.

Memory Dump YARA Scan Match on Invariant
How it Works Versatile Scanning
e YARA's flexible rule language is designed to find e |t can scan both live process memory
generalized text and binary patterns, making it and offline memory dump files, fitting
perfect for catching polymorphic variants based multiple analysis workflows.

on their core invariants.

& NotebookLM

The Data Speaks for Itself: Static vs. Memory Detection

A practical test on 100 Amadey samples and their corresponding memory dumps shows the
dramatic superiority of memory-based detection.

STATIC FILE SCAN (100 Samples) MEMORY DUMP SCAN (63 Dumps)

/1% 93%

(71 of 100 Samples Detected) (60 of 63 Dumps Detected)

The Winning Rules: The most effective memory-based YARA rules were not family-specific
signatures, but generic, behavior-based signals like "DetectEncryptedVariants and
‘meth_get_eip ', proving the power of hunting for invariants.

& NotebooklLM

Introducing APT: The Amadey Pipeline Toolkit

To make this advanced memory analysis workflow repeatable and
accessible, we have developed and open-sourced a complete toolset.

What is APT? O gt i, R
. . . ¥ wmim e P o e 8 ITa m Aot
» A Dockerized suite of Python and shell scripts e) koot |
designed for safe, isolated malware analysis. = |
Core Capabilities: -
» Automate sample collection from MalwareBazaar APT: Amadey Pipsiine Toolki S
based on tags. - T RN RS S AT S S
e Fetch corresponding process memory dumps from e ke
Hybrid-Analysis. LI I
e Run and aggregate YARA scan results at scale s e mace
across large sample sets. e R

& NotebooklLM

The Automated Hunt: From Hash to Verdict in Four Steps

APT streamlines the entire investigative process—from sample acquisition to
memory scanning—into a simple, command-line driven workflow.

? 1 Collect Hashes
s oy |
$

2 Download Samples

3 Fetch Memory Dumps

s
3
B3
3

4 Scan & Analyze
ol

&1 NotebookLM

Beyond Detection: Profiling Malware with Layered Signals

Using a broad ruleset like YaraHub, APT enables a multi-layered analysis that
describes how a sample is suspicious, not just that it is.

HIGH Signal (Generic & Suspicious)

Answers: “Is this memory. suspicious in general?”

meth get_eip, pe_detect tls callbacks,
DetectEncryptedVariants

MID Signal (Frameworks & Campaigns)

Answers: “Is this part of a known attack framework?”

cobalt_strike_ ... patterns

LOW Signal (Family-Specific)

Answers: “Is this a confirmed family?”

win_lumma_generic

&1 NotebookLM

Memory Doesn’t Lie

The ground truth of malware behavior resides in memory, making it the
most resilient and strategic battleground for defenders.

v/ Static analysis is fundamentally outmatched by modern, evasive
threats like Amadey.

v/ Memory analysis, focused on “Execution Invariants,” bypasses
obfuscation to reveal the malware's true nature.

v/ This strategy is robust, as evading it imposes prohibitive costs on
attackers.

v/ The APT toolkit provides the practical, open-source means to
operationalize this superior approach today.

& NotebookLM

Get the Tools. Join the Hunt.

Clone the repo. Run the pipeline. Hunt smarter.

Questions?

